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Abstracl. Itis shown thal the complex bulk band structure and the surface-state/resonance
dispersions can be obtained using a dynamical scattering multislice matrix method
previously developed for the calculation of LEED (low-energy electron diffraction),
despite existing opinions that certain formalisms using the multislice method may be
numerically unstable. Calculations have been performed for the free-clectron-like metal
magnesium and the semiconductor gallium arsenide as the first step of the calculation
of photoemission intensity profiles from these materials. The obtained real and complex
band structures, as well as the surface-state/resonance dispersions, have been compared
to the results of other calculations and were found to show good agreement. In addition,
an interesting behaviour of the wavefunction in the vicinity of ceriain projectied bulk band
edges was observed; it is scemingly related to a kind of ‘beating’ of the Bloch waves
composing the wavefunction.

1. Introduction

This paper presents a method of calculation of the complex bulk band structure and
surface-state/resonance dispersions of a crystal and is applied to the free-electron-
like metal magnesivm and the semiconductor gallium arsenide. The method uses
a numerical scheme originally written to caleulate low-energy electron diffraction
(LEED) intensities [1,2]. The LEED scheme combines the multislice method of
Cowley and Moodie [3] with the semi-reciprocal supermatrix method of Tournarie [4).
This numerical scheme has also been successfully used to calculate current image
diffraction {CID) patterns [5] and has been modified to perform calculations of
convergent beam reflection high-energy electron diffraction (CBRHEED) intensities [6].

Having obtained the LEED states and band structures they will be used in a
one-step calculation of photoemission intensities. The final states are obtained as
time-reversed LEED states, and the band structure states are used to calculate the
initial-state wavefunctions in the valence band energy region. This will be the subject
of a later paper. It is critical that the correct band structure is obtained, so the
present results of real and complex band structures are compared with existing data
obtained by other methods, so far as they are available. However, it should be kept
in mind that, because pseudopotentials are used, the wavefunctions obtained will be
the pseudowavefunctions.
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Section 2 gives an outline of the LEED theory from which the band structure
calculation was derived, while section 3 shows the results for the conventional and
complex bulk band structures. Section 4 contains a description of how surface
states and surface resonances can be obtained using the present method and shows
the resulting surface-state/resonance dispersions for Mg and GaAs (in the ['-X'
direction). In section 5 we present the conclusion. Contained in the appendix is
an illustration of the unusual behaviour of the wavefunction found in the vicinity
of certain kinds of projected bulk band edges. The convergence of the bulk band
structure and wavefunctions are also discussed in the appendix.

2, Theory

1t is useful to first describe the multislice matrix method for LEED, which is used to
calculate the band structures. The method is given in detail in [2] and is outlined
below.

By imposing Bloch periodicity, for given values of (k;, k,) = ky, the Schrodinger
equation can be expressed in mixed representation, i.e. remprocal space is used in the
plane parallel to the surface (the x, y plane), but not in the z direction, perpendicular
to the surface. The Schridinger equation can then be written as a first-order matrix
differential equation by using a supermatrix:

d U(z) 0 E U(z)
U'(2) -M(z) O U(z)/"
Here M(z) is a Hermitian matrix defining the scattering potential and E is the
identity matrix. This equation can be written as

d®(z)/dz = S(2)®(2) 1))

where

5= () 1)

and ®(z) is a supercolumn vector, of order two, containing the infinite column
vectors U(z) and U'(z), which contain the wave amplitudes and their derivatives
respectively,

If the crystal is split into a number of very thin slices with thickness Az, S can
be regarded as being independent of z in one slice. Thus, the solution to (1) for such
a thin slice is

O(Az) = exp(SAz)P(0)

The full solution is obtained by the product of solutions for the thin slices constituting
the crystal. It is then possible to write

(53) =2 (o0) @
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where the matrix €2 is evaluated by a product of propagator operators for the thin
slices of crystal:

Q(z) = Qu(AZ,) ... (A2 (Az)).

For 2 slice
q _ L 0 E
(az) =eps,an) =ep|(_y o) su]. )

Equation (2) gives a formalism for writing down an expression for the wavefunction
P(r) and its derivative 3 (r), at any point in the crystal, because the elements of
U and U’ (the amplitudes and their derivatives reSpecnvely) form the coefficients of
the two-dimensional Fourier expansion of v(r) and ' ().

2.1. LEED intensities

To obtain LEED intensities, boundary conditions are applied for a slab of crystal with
thickness d, which is infinite in extent in the z and y directions, and surrounded by
vacuum. The thickness d is chosen to be sufficiently thick so as to approximate the
semi-infinite crystal. Continuity of the wavefunction and derivative are required at
z = 0and z = d. The resulting expression for the reflected wave amplitudes is given
by

b=(a+ ﬁ)‘l(a - Ray

where q, is a column vector containing the amplitude (equal to unity) of the incident
wave and

o =iy (d)K + KQu(d)K

and
B =1KQy(d) ~ Qy(d).
We write
—_ { Qu(d) Qu(d))
o= (g% oo
and ‘ -
kL0
k= : - | “
0 o kY

Here K is a diagonal matrix containing the normal components of the wavevectors
of the waves in the vacuum. The LEED intensity is obtained by evaluating bt b.

It is necessary to truncate the matrix M,, (in equation (3)) and thus U and U’ to
a suitable size N. If N ‘beams’ (sec [2]) are used, the matrices M, and Q{z) will
be of dimensions N x N and 2N x 2N respectively.
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2.2, Bulk band structure

The bulk band structure is obtained from the secular equation for the Bloch function
U(z) = B(=z) [7-10]. Using Bloch’s theorem, it is required that

B(c) = exp(ik,c)B(0)
and from equation (2)

(c) B(0) = exp(ik, c) B(0) )

where k, is the component of the wavevector perpendicular to the surface and 2(c})
is the operator that translates a wavefunction from one plane to another equivalent
plane one lattice spacing, ¢, away from the surface. (It is assumed here that the c
axis lies perpendicular to the surface.) Therefore, from the eigenvalues e*:¢ of Q(c),
the complex bulk band structure k,(E) can be obtained for a given energy and ky.

The ZN eigenvectors of equation (5) contain the Bloch wave amplitudes and
derivatives (evaluated at z = (). With the use of equation (2) it is then possible
to find the Bloch wave amplitudes (and their derivatives) at any point in the crystal.
Bloch waves can be ‘propagating’ or ‘evanescent’ according to whether k, is real or
imaginary for real energy. In the presence of absorption (i.c. the imaginary part of
the energy), N of the Bloch waves increase into the crystal with z, and N of them
decrease with increasing z. The number of beams, N, in the calculation for the
band structure differ depending on the particular crystal being studied. For complex
structures with strong bonding between atoms a large value of N is required, while
for free-electron-like materials fewer are needed (see below). i

It should be noted that there exists the opinion that certain formalisms using the
multislice method are numerically unstable when many evanescent waves are included
[11,12}. Several approaches have been taken to overcome this problem; for example,
Zhao et al [12] use an embedding method evaluating only the reflection () matrices,
while Maksym [13] has introduced a stabilization procedure based on the layer-
doubling method of LEED, and Meyer-Ehmsen [14] has overcome this difficulty by
calculating the reflectivity matrix of a perfect crystal directly from a set of non-linear
first-order differential equations. Recently Ichimiya [15] has demonstrated the stability
and convergence of his calculation method for obtaining RHEED intensities [16] using
the multislice formalism. In the present calculation the problem of instabilities is not
so acute, because pseudopotentials are used (see below) and for ¢valuating the Bloch
waves only one lattice period iS needed. Also, if a surface barrier is included, the
potential distribution is generally a smooth slowly varying function, and therefore nc*
as problematic as in the bulk region. A new method of avoiding the divergence caused
. by the instability is described briefly in the appendix. In any case, the stability and
‘convergence of the present results have been checked everywhere. A few examples
are given in the appendix. Ultimately the agreement with other band structure
calculations can give us confidence that the calculations are sound.

2.3. The potential

It is reasonable to use a pseudopotential when calculating the properties of
conductionpvalence band electrons. A local pseudopotential must be used in the
z direction because it is assumed in our calculation scheme that the wavefunction
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Y{z), for values of = ahead of the point at which the evaluation is being carried out,
is not known [7].

The potential used for calculating the band structure of magnesium was
constructed using the tabulated local pseudopotential form factors given by Harrison
[17] derived from the model pseudopotential of Heine and Abarenkov, which is an
extension of the quantum defect model. For the GaAs band structure shown in
figure 2, the crystal potential was constructed using the local pseudopotential form
factors given by Cohen and Bergstresser [18]. An analytic form of the form factors
(local pseudopotential) has been given by Humphreys and Srivastava [19] based on
the empirical pseudopotential method, which makes it possible to find the form factor
for any desired reciprocal lattice vector. These form factors were used in calculation
of the band structures shown in figures 4, 5 and 7.
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Figure 1. The band structure of magnesium calculated by the multislice matrix method
using a pseudopotential derived from the local pseudopotential form factors given by
Harrison [17].
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Figure 2. The band structure of GaAs caiculated by the multislice matrix method using
a pseudopotential calculated from the local pseudopotential form factors given by Cohen
and Bergstresser [18).
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In the multislice method it is easy to include an arbitrarily shaped surface barrier
into the problem using various models. In the present work, however, a simple step
barrier formed by sharply cutting off the three-dimensionally periodic bulk potential
was used.

3. Results: bulk band structure

3.1. Conventional (real) band structure

3.1.1. Magnesium. For Mg the size of the supermatrix was 14 x 14 for the I'-A
direction, 10 x 10 for the I'-M direction and 34 x 34 for the I'-K-M direction. The
number of slices used for the repeating cell, for both the Mg and GaAs calculation,
was 16.

Table 1. Comparison of the energy gaps in the magnesium baud structure. All entries
are measured in eV,

Critical points  Present work Ref. [26] Rel. [24] - Ref. [27] Ref. [25] Ref. [28]
APW(a)  APw(b)
r;-r¥ 0.6 0.4 0.46 136 0.46 071 14l
S -MF o1 0.027 0.57 0.136. 024 063
Ks - K1 01 02 0.027 0.73 0.19 035 057

The conventional band structure for magnesium calculated using this scheme is
shown in figure 1. In table 1 some energy gaps of the present Mg band structure
are compared with previous calculations (the last four columns were taken from the
paper by Taut et al [24), being converted into eV for comparison). The method of
calculation used by Blaha et a! [26] is a full-potential linearized augmented plane
wave (LAPW) method within a scalar relativistic description and assuming a local
density approximation. Their results may be regarded as the most reliable among
the available data. The band-gap values given for that of Blaha et al [26] may be
slightly inaccurately reproduced because they were obtained from the figures shown
in the paper by Blaha et al [26]. One finds overall a good agreement between the
present and previously obtained band structures, the difference lymg in our choice of
the simplified pseudopotential of Harrison [17].

3.1.2. Gallium arsenide. 1n the plot shown in figure 2 it can be seen by comparing with
figure 5 of Cohen and Bergstresser [18] that the present results agree very closely, as
they should do because the same pseudopotentials were used. The supermatnx used
in the calculation was of dimension 74 x 74.

In table 2 some critical points of the present GaAs band structure are compared
with previous calculations. The third column in this table was given in the paper
by Giovanni and Christensen [29]. It is a linear muffin-tin orbital calculation by
Jariborg and Freeman [30] and is in good agreement with the present calculation,
to within 0.2¢V, except at the conduction band critical points X, and X, where
the difference is 0.5 and 0.4eV respectively. The results may also be compared
to those by Tang [31], shown in the last column of the table. Tang treats the local
pseudopotential Hamiltonian in the spatial representation by the tight-binding theory.
Again the agreement is quite good, the critical values agreeing to within 0.3eV except
at the I, point, where the difference is 0.5eV.
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Table 2. Critical points of the GaAs band structure. All energies are measured in eV.

Critical points Present work Ref. [30] Ref. [31]

I -12.1 -12.3 -12.59
Ty 6.0 0.0 0.0

Ty 1.2 - 1.1 © 142
Tys 44 45 442
X1 -10.2 -10.42 -1055
X3 —-6.2 —6.20 =595
Xs -24 —-2.43 | -2.18
X1 1.6 207 1.87
X3 1.9 231 212
Ly -10.8 -11.06 -11.13
Iy -6.0 —-6.09 -6.27
Ly -1.0 -1.02 -0.72
Ly 1.5 1.55 154
Ly 4.9 491 517

3.2. Complex band structure

When calculating the band structure for an infinite crystal the imaginary part of E is
put equal to zero, leading to ‘real lines’ [32] in the complex band structure. In the
calculation of photoemission intensities we need complex band structures obtained
for complex energies. For energies above the vacuum level, the imaginary part
of the energy represents the ‘absorption’ of a LEED electron (or the lifetime of a
photoelectron in its final state), while for energies below the Fermi level the presence
of such an imaginary part can be thought of as describing the lifetime of a hole state,
which results after photoexcitation.

Figures 3 and 4(a) show three-dimensional complex band structeres for Mg and
GaAs respectively, where the real energy is plotted as a function of the real and
imaginary parts (k,,k;) of k,. Figure 4(b) shows (for GaAs) in a three-dimensional
complex band structure plot the typical effect that a small (0.05eV) constant imaginary
part of the energy produces on the complex band structures. We have found that
the use of a small imaginary part of energy is a great help in understanding the
complicated band structure of GaAs. Figures 5(¢) and (b) show an alternative
projected representation of the complex band structure of GaAs in the [110] and
[100] directions, for real energies.

For Mg we have not found in the literature comparative results of complex band
structure. The complex band structure has been obtained by Smith et al [33] for
GaAs (along the [001] direction, k; = 0). They use a pseudopotential and employ
a (damped) plane-wave basis set. Complex band structures of zinc-blende materiais
have also been obtained by Chang [34] using an empirical tight-binding formalism.
The complex band structures of Chang, for GaAs in the [100] and [110] directions,
do not show qualitative agreement with the present calculations in the topological
form of the imaginary and complex bands. (See Chang’s figures 4 and 16.) It is to
be noted, however, that for energies greater than the valence band maximum, the
conventional real band structure of Chang already shows a qualitative deviation from
other results (such as those referenced in table 2 including the present results, and
those of [33]). It is suggested that a comparison of complex band structures may be
useful for deriving proper parameters in an empirical scheme like that of Chang,

The complex band structure obtained by Smith et a/ [33] for GaAs in the [100]
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Figure 3. Perspective representation
of the complex band structure for
Mg (a) for k" = 0, (b) for k" =
1.7619A- in the [1120] direction
and (c) for ky = 1.0173A~" in the
[1110] direction (see figure 6). The
circles connected by full curves show
points on the real plane (k; and k,
are in units of A™'). (Note that the

imaginary loops at the two ends of
(b) are different.)
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Figure 4. Perspective represenlation of the complex band structure for (z) an infinite
crystal of GaAs in the I'-K~X direction. The full curves show points lying on the real
plane, ie. the conventional band structure. (k; and &, are in units of A_].) (b) Same
as (a), except it is obtained with the imaginary part of the energy equal to 0.05 eV,
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Figure 5. Usual projected representation. (a) The complex band structure of GaAs
along the [110] direction where the band structure enclosed in the small rectangle has
been enlarged for clarity, and (b) the complex band structure of GaAs along the [001]
direction. In both cases the crosses correspond to imaginary bands, full circles to rend
bands and the pairs of broken curves to complex bands.

direction shows better agreement with the present results (figure 5(b)) than does the
complex band structures obtained by Chang. However, on comparing figure 2 of
[33] with figure 5(b) of the present paper, one difference is seen. The form of the
complex band indicated with an arrow in figure 5(b) is different to the corresponding
band shown in figure 2 of [33]. For the moment it is not clear whether the difference
comes from the different choice of the method or from the model potential. In any
case, our result for GaAs indicates that this complex band belongs to those ‘novel
topological structures’ of Chang, as shown in his figure 23.
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4. Surface-state/resonance band structure

As mentioned in the introduction, the present multislice method will form the basis
for a one-step calculation of photoemission intensities. The final states being taken
as the time-reversed LEED states and the initial states will be formed from a linear
combination of Bloch waves obtained in the calculation of the complex band structure
as the eigenvectors in (5). For details we refer to [35]. The initial state can be written
as

U™(z) = BH(2)c™ + b (2)c™ ™ 6

where ¢™ is a column vector containing the N coefficients of the Bloch waves B} (z)
travelling or evanescent into the crystal, and the superscript m corresponds to the
mth Bloch wave b]" ~( z) propagating towards the surface from the bulk. By matching
the waves and derivatives across the vacuum/crystal boundary (= = 0), neglecting the
surface-barrier/over-layer region for simplicity, the equation below is obtained, from
which the ratio ¢™ /¢™ ~ can be determined:

(BF(0)+ iK B}(0))c™ = ~(b;™~(0) + iK b ~(0))c™ - 0

where b;"‘ ~ and B;*‘ represent the derivatives, and K is a diagonal matrix containing
the normal components of the wavevectors of the waves in vacuum (see equation (4));
c¢™ = is determined by normalization of the initial-state wavefunction. This equation
can be easily modified to include a surface-barrier/over-layer.

The surface-state/resonance band structure using the present method can be
obtained by considering the condition that there is a solution to equation (7) when
there is no incident wave (¢™~ = 0). That is, surface states/resonances exist at the
zeros/nearly zeros of the determinant of matrix (B;*‘ +iK B;" ), or more conveniently,
of the Hermitian matrix

det[( B;* + il BN)(BY +iKB})} =0/ ~0 ®

where the calculation is made without the imaginary lifetime parameter. We have
found that equation (8) does not always correspond to a surface-state/resonance,
particularly at band edges and saddle points of imaginary bands (c.g. inside the
fundamental band gap of GaAs). In these cases equation (8) shows a sharp minimum,
whereas for a surface-state/resonance a parabolic form of the minimum appears. It is
necessary to plot the wavefunction as a function of distance into the crystal and note
whether it has the form typical of a surface state/resonance (s¢e figure A2).

The surface-state/resonance band structure has been calculated by this method
for Mg and GaAs (['-X' direction) using the step barriers and the terminated bulk
lattice structures. The result for Mg is shown in figure 6. The open circles represent
the bulk band edges and the position of the surface-states/resonances by smaller full
circles. The surface electronic structure of Mg(0001) has been calculated by Chulkov
et al [20] using the slab method (a ten-layer film was used). On comparing figure 6
with figure 10 of [20], it can be seen that the band structures obtained by the two
methods are very similar. However, in the present calculation two additional surface
resonance bands were obtained, which are situated near the M point at approximately
2.2eV and near the K point at approximately 1.5eV (both are indicated by a broken
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Figare 6. The surface-state/resonance band structure of Mg (0001) obtained using the
present method. The small dots denote the position of the surface-states/resonances and
the open circles denote projected bulk band edges. Perpendicular broken lines may be
compared to figures 3(b), {c), and the perpendicular line with tags to figure A2.

arrow). When using the slab method the classification of a surface resonance may be
somewhat difficult, for if the slab is taken to be too thin it may be difficult to detect a
slowly decaying surface-resonance wave. This may partly explain the absence in [20]
of the extra resonances observed in the present work.

In the present study a rather interesting behaviour of the wavefunction was
observed at the positions of a minimum of expression (8} occurring at band edges
as mentioned above; see, for example, figure A2(a), which is different to that of
a surface state or resonance as shown in figure A2(c) and different to that of an
arbitrary initial state such as that shown in figure A2(b). It is possible that there
exists a kind of ‘beating’ of the Bloch waves which compose the wavefunction at that
energy. This idea will be investigated further in a later paper.

The surface-state/resonance dispersions have also been calculated for GaAs (110)
in the ['~X’ direction using the multislice method. The results are shown in
figure 7. They were obtained assuming an unrelaxed (1x1) surface structure, ic
the terminated bulk structure. The results obtained using the present method are
shown as crosses, the bulk band edges are represented by open circles and the region
of the projected bulk bands is shown as the hashed area. The present results can be
compared with the earlier calculations by Schmeits et al [36] (shown as full circles in
figure 7) and Ferraz er al [37) (shown as the broken lines in figure 7), who use a tight-
binding scattering-theoretical method and a self-consistent pseudopotential method
respectively, and also assume an unrelaxed (1x1) surface. In all of the calculations
two surface states are present throughout the ['~X’ section of the Brillouin zone in
the fundamental gap occurring in the energy region of approximately 0 to 1.5eV. The
position of these two bands in each calculation are slightly different, however they
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are within 0.5eV of each other.

It is well known that the relaxation effects for GaAs (110) are significant [21-23)
and have a strong influence on the surface state/resonance band structure; therefore
for calculations particularly concerned with surface states/fresonances, an accurate
potential must be used in the surface region [38].

§. Conclusion

It has been demonstrated that the method presented, based on a multislice formalism
for LEED, can be used successfully to calculate the conventional and complex bulk
band structure and the surface-state/resonance band structure of solids. It has been
applied to Mg and GaAs, where good agreement with previous results were obtained.
In addition, an interesting behaviour of the wavefunction in the vicinity of a
particular kind of projected bulk band edge was observed; it satisfies, incidentally, the
same existence conditions of surface resonances and is seemingly related to a kind of
‘beating’ of the Bloch waves composing the wavefunction.
It is noticed that the present multislice method may be a useful alternative to
. the various methods of obtaining surface and interface electronic states such as those
discussed by Smith er al [33], for example in analysing semiconductor heterojunctions.
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Appendix.

The convergence of the band structure (wavevector k, for ky = 0) as a function
of basis set size (number of beams) is illustrated by a few examples, as shown
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in figure Al(e) for GaAs (110) for the energies indicated (in ¢V and relative to
the valence band maximum obtained for 29 beams). The results indicate that the
calculation of band structures is sufficiently stable in the present range of parameters,

Gas {11€) Cuds (110}
0.8 T T ——— T
— I IE=—5¢§I T I T T T T T T T
=) Number of
] 07 B =44 Brsmy (b)
086 . f?
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Figure AL. (a) GaAs (110). The perpendicular component of the wavevector k,

(k) =0) (A_l) plotted as a function of the number of beams N for the three energies
indicated (in eV and relative to the valence band maximum for 29 beams). The slice
thickness was 0.250 A and there were 16 slices per period. (b) GaAs (110). A plot
of the z, y average of ¥{r) squared, {(r)|p(r))+,y, as a function of the number of
slices, obtained with an energy of —4.5eV (relative to the valence band maximum for
29 beams) and using the number of beams N indicated {ky = 0).

Figure Al(b) shows a few examples for GaAs (110) of the variation of the
x,y average squared of v(r), (¥(r)|¥(r)),,,, derived from equations (5) and (6)
without an imaginary potential, with both slice number and the number of beams.
The position of z = 0 is the vacuum/bulk crystal boundary. One finds that the
curves converge with an increasing number of beams, but an uitimate divergence
at a certain depth occurs when the function is evaluated beginning at the vacuum
side, and is apparently due to the effect of increasing evanescent waves introduced
by a numerical error. The divergence occurs earlier for a larger number of beams
due to the effect of more strongly increasing evanescent waves. We note, howewer,
that nothing serious happens within the first period (16 layers). The results remain
practically the same for the calculations using 32 layers per period,

We have found that the solution in further depths can be evaluated without
divergence by using equation (6). The multislice calculation is done only in the first
period (‘cell’) of the bulk and, when necessary, the surface barrier. The values of
Bloch waves B (z) and b ~(z) appearing in (6) are evaluated inside the first
cell and stored. The values of U™(z) for succeeding cells are constructed by
multiplying each of the Bloch waves by its proper exponential factor according to
(5), i.e. explik] c(g — 1)] for the nth Bloch wave in the gth cell. The curves shown
in figure A2 are derived using this new method.

In figures A2(a), (b) and (c) are shown plots of (v(r)|¥(r)), , for Mg(0001)
as a function of slice number for three initial states, each with k“ = 1.5274A in the

['-K~M (or [1120] direction (figure 6).) The first, present just at the band edge at
an energy of 0.21eV, displays an unusual behaviour. It appears that some kind of
enhancement is occurring, perhaps due to ‘beating’ of the Bloch waves composing
the initial states. The second plot represents an arbitrary example of the usual type
of variation of ((r)|¥(r)), ., in this case at an energy of 1.0eV. The third shows
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Figure A2. (a) Mg (0001). A plot of the r,y

< Y(D)l(r) >ay

average of (r) squared as a function of the
number of slices to show the unusual behaviour
al an energy of 021eV (relative to the Fermi
level) with ky = 1.527A in the I'-K-M or [1120]
direction. Two functions of the type given by
equation (6) are shown. (b) As for (2) but obtained
at an energy of 1.0eV to show an arbitrary example
of the usual form of (¥(r)|P(7))s,y. Also two
functions are shown. (c) As for (a) but obtained
at an energy of 1.43eV 1o show an example of the
Iy ¥, typical behaviour of {y(r)|¢(r))s,y, for a surface

40 BO 120 160 200
Slice Number resonance.

the typical behaviour of (¥(r)[¥(r)}, , for a surface-state resonance (at an energy
1.43eV) where the enhancement of the wavefunction near the surface can be seen.
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