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AbstmcL I1 is shown Ihal the compla bulk band simcture and the surface-slatelresonance 
dispersions can be obtained using a dynamical scattering multislice malrix method 
previously dweloped for lhe calculalion of LED (low-energy eleclmn diffraction), 
dspi le  existing opinions thal cenain formalisms using Ihe mullislice melhod may be 
numerically unstable. Calculations have been performed for the freeelectran-like metal 
magnesium and rhe semiconduclor gallium arsenide as the first step of rhe calculation 
of pholoemiuion inlensily pmfiles fmm these materials. The oblained real and complex 
band SINCIUITS, as well as the surface-statelresonance dispenions, have been compared 
to the results of other calculations and were found to show good agreemenl. In addition, 
an intersling behaviour ot the wavefunction in the vicinity of cenain projected bulk band 
edge5 was obsewed; il is seemingly related lo a kind of 'beating' of the Bloch waves 
c a m p i n g  the wavefunction. 

- 

1. Introduction 

This paper presents a method of calculation of the complex bulk band structure and 
surface-statehesonance dispersions of a crystal and is applied to the free-electron- 
like metal magnesium and the semiconductor gallium arsenide. The method uses 
a numerical scheme originally written -to calculate low-energy electron diffraction 
(LEED) intensities [1,2]. The LEED scheme combines the multislice. method of 
Cowley and Moodie [3] with the semi-reciprocal supermatrix method of Tournarie [4]. 
This numerical scheme has also been successfully used to calculate current image 
diffraction (CID) patterns [SI and has been modified-to perform calculations bf 

convergent beam reflection high-energy electron diffraction (CBRHEED) intensities [6]. 
Having obtained the WED states and band structures they will be used in a 

one-step calculation of photoemission intensities. The final states are obtained as 
time-reversed LEED states, and the  band structure states are used to calculate the 
initial-state wavefunctions in the valence band energy region. This will be the subject 
of a later paper. It is critical that the correct band structure is obtained, so the 
present results of real and complex band structures are compared with existing data 
obtained by other methods, so far as they are available. However, it should be kept 
in mind that, because pseudopotentials are used, the wavefunctions obtained will be 
the pseudowavefunctions. 

0953-8984192/448~l+lh~7.50 0 1992 IOP Publishing Ltd 8461 
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Section 2 gives an outline of the LEED theory from which the band structure 
calculation was derived, while section 3 shows the results for the conventional and 
complex bulk band structures. Section 4 contains a description of how surface 
states and surface resonances can be obtained using the present method and shows 
the resulting surface-state/resonance dispersiom for Mg and GaAs (in the r-Xt 
direction). In section 5 we present the conclusion. Contained in the appendix is 
an illustration of the unusual behaviour of the wavefunction found in the vicinity 
of certain kinds of projected bulk band edges. The convergence of the bulk band 
structure and wavefunctions are also discussed in the appendix. 

2. Theory 

It is useful to first describe the multislice matrix method for LEED, which is used to 
calculate the band structures. The method is given in detail in [2] and is outlined 
below. 

By imposing BIoch periodicity, for given values of (k , ,  ky ) = k,,, the Schrhdinger 
equation can be expressed in mixed representation, i.e. reciprocal space is used h the 
plane parallel to the surface (the I, y plane), but not in the z direction, perpendicular 
to the surface. The Schrodinger equation can then be written as a first-order matrix 
differential equation by using a supermatrix: 

Here M ( r )  is a Hermitian matrix defining the scattering potential and E is the 
identity matrix. This equation can be written as 

d@(z)/dz = S ( z ) @ ( z )  (1) 

where 

s(s) = ( - M ( r )  O 0 

and @ ( z )  is a supercolumn vector, of order two, containing the infinite column 
vectors U ( t )  and U ’ ( t ) ,  which contain the wave amplitudes and their derivatives 
respectively. 

If the crystal is split into a number of very thin slices with thickness As, S cair 
be regarded-as bein6ndependent of z in one slice. Thus, the solution to (1) for such 
a thin slice is 

@(Az)  = exp(SAr)@(O). 

The full solution is obtained by the product of solutions for the thin slices Constituting 
the crystal. It is then possible to write 
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where the matrix S2 is evaluated by a product of propagator operators for the thin 
slices of crystal: 

Q(z) = n,(Az,).  . .S22(Az2)S21(Azl). 

For a slice 

Equation (2) gives a form?lism for writing down an expression for the wavefunction 
+(r )  and its derivative + ( r ) ,  at any point in the crystal, because the elements of 
U and U' (the amplitudes and their derivatives respectively) form the coefficients Of 
the two-dimensional Fourier expansion of +(r) and + I ( + ) .  

21. LEED intensities 

'RI obtain LEED intensities, boundaly conditions are applied for a slab of crystal with 
thickness d ,  which is infinite in extent in the z and y directions, and surrounded by 
vacuum. The thickness d is chosen to be sufficiently thick so as to approximate the 
semi-infinite crystal. Continuity of the wavefunction and derivative are required at 
z = 0 and t = d.  The resulting expression for the reflected wave amplitudes is given 
bY 

b = ( 0 1  + P)- ' (o  - P)ao 

where a" is a column vector containing the amplitude (equal to unity) of the incident 
wave and 

and 

We write 

and 

01 = iQ,,(d)K + K S 2 1 , ( d ) K  

p = iKR,,(d) - S2,,(d). 

Here K is a diagonal matrix containing the normal components of the wavevectors 
of the waves in the vacuum. The LEED intensity is obtained by evaluating bt b. 

It is necessaly to truncate the matrix M ,  (in equation (3)) and thus U and U' to 
a suitable size N .  If N 'beams' (see 121) are used, the matrices M,, and Q( L) will 
be of dimensions N x N and 2N x 2N respectively. 
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2.2. Bulk band stmcture 

The bulk band structure is obtained from the secular equation for the Bloch function 
V ( z )  = B ( z )  [7-lo]. Using Bloch’s theorem, it is required that 

B(c) = exp(ik,c)B(O) 

and from equation (2)  

O(c)B(O) = exp(ik,c)B(O) (5)  

where IC, is the component of the wavevector perpendicular to the surface and O ( c )  
is the operator that translates a wavefunction from one plane to another equivalent 
plane one lattice spacing, c, away from the surface. (It is assumed here that the c 
axis lies perpendicular to the surface.) Therefore, from the eigenvalues eikSc of Sl(c), 
the complex bulk band structure k , ( E )  can be obtained for a given energy and k,,. 

The 2 N  eigenvectors of equation (5) contain the Bloch wave amplitudes and 
derivatives (evaluated at z = 0). With the use of equation (2)  it is then possible 
to find the Bloch wave amplitudes (and their derivatives) at any point in the crystal. 
Bloch waves can be ‘propagating’ or ‘evanescent’ according to whether k, is real or 
imaginary for real energy. In the presence of absorption (i.e. the imaginary part of 
the energy), N of the Bloch waves increase into the crystal with z, and N of them 
decrease with increasing z. The number of beams, N ,  in the calculation for the 
band structure differ depending on the particular crystal being studied. For complex 
structures with strong bonding between atoms a large value of N is required, while 
for free-electron-like materials fewer are needed (see below). 

It should be noted that there exists the opinion that certain formalisms using the 
multislice method are numerically unstable when many evanescent waves are included 
[ll, 12). Several approaches have been taken to overcome this problem; for example, 
Zhao et a1 [12] use an embedding method evaluating only the reflection (R) matrices, 
while Maksym [13] has introduced a stabilization procedure based on the layer- 
doubling method of LEED, and Meyer-Ehmsen [14] has overcome this difficulty by 
calculating the reflectivity matrix of a perfect crystal directly from a set of non-linear 
first-order differential equations. Recently Ichimiya (151 has demonstrated the stability 
and convergence of his calculation method for obtaining RHEED intensities [16] using 
the multislice formalism. In the present calculation the problem of instabilities is not 
so acute, because pseudopotentials are used (see below) and for evaluating the Bloch 
waves only one lattice period is needed. Also, if a surface barrier is included, the 
potential distribution is generally a smooth slowly varying function, and therefore nL* 
as problematic as in the bulk region. A new method of avoiding the divergence caused 
by the instability is described briefly in the appendix. In any case, the stability and 
convergence of the present resulrs have been checked evewhere .  A few examples 
are given in the appendix. Ultimately the agreement with other band structure 
calculations can give us confidence that the calculations are sound. 

2.3. The potential 

It is reasonable to use a pseudopotential when calculating the properties Of 
conductionllalence band electrons. A local pseudopotential must be used in the 
z direction because it is assumed in our calculation scheme that the wavefunction 
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$( z ) ,  for values of z ahead of the point at which the evaluation is being carried out, 
is not known [7]. 

The potential used for calculating the band structure of magnesium was 
constructed using the tabulated local pseudopotential form factors given by Harrison 
[17] derived from the model pseudopotential of Heine and Abarenkov, which is an 
extension of the quantum defect model. For the GaAs band structure shown in 
figure 2, the crystal potential was constructed using the local pseudopotential form 
factors given by a h e n  and Bergstresser [MI. An analytic form of the form factors 
(local pseudopotential) has been given by Humphreys and Srivastava [19] based on 
the empirical pseudopotential method, which makes it possible to find the form factor 
for any desired reciprocal lattice vector. These form factors were used in calculation 
of the hand structures shown in figures 4, 5 and 7. 

Figure 1. The band structure of magnesium calculated by the mullislice matrix method 
using a pseudopotential derived from the lmal paeudapotential farm factors given by 
Harrison 1171. 

Figure 1. The band stmelure of GaA8 calculated by the mullislice matrix methad using 
a pseudopatential calculated fmm the local pseudopotential form facton given by Cohen 
and BergstFesser 1181. 
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In the multislice method it is easy to include an arbitrarily shaped surface barrier 
into the problem using various models. In the present work, however, a simple step 
barrier formed by sharply cutting off the three-dimensionally periodic bulk potential 
was used. 

3. Results: bulk band structure 

3.1. Convenlwnal (real) band structure 

3.1.1. Magnesium. For Mg the size of the supermatrix was 14 x 14 for the r - A  
direction, 10 x 10 for the r-M direction and 34 x 34 for the r-K-M direction. The 
number of slices used for the repeating cell, for both the Mg and GaAs calculation, 
was 16. 

Table 1. Comparison of Ihe cncrgy gap in the magnesium band structure. All entries 
are measured in cV. 

Critical poinls Prsenr work Ref. [26] Ref. [24] Ref. I271 Ref. [U] Ref. [zs] 

m ( a )  m ( b )  
r; -r: 0.6 0.4 0.46 1.36 0.46 0.71 1.41 
MF - M: 0.1 0.027 0.57 0.136 0.24 0.63 

0.1 0.2 0.027 0.73 0.19 0.35 0.57 Ks - Ki 

The conventional band structure for magnesium calculated using this scheme is 
shown in figure 1. In table 1 some energy gaps of the present Mg band structure 
are compared with previous calculations (the last four columns were taken from the 
paper by 'hut et a1 [24], being converted into eV for comparison). The method of 
calculation used by Blaha et a1 [26] is a full-potential linearized augmented plane 
wave ( W W )  method within a scalar relativistic description and assuming a local 
density approximation. Their results may be regarded as the most reliable among 
the available data. The band-gap values given for that of Blaha et a1 [XI may be 
slightly inaccurately reproduced because they were obtained from the figures shown 
in the paper by Blaha et ol [26]. One finds overall a good agreement between the 
present and previously obtained band structures, the difference lying in our choice of 
the simplified pseudopotential of Harrison [17]. 

3.1.2. Gallium arsenide. In the plot shown in figure 2 it can be seen by comparing with 
figure 5 of Cohen and Bergstresser [18] that the present results agree very closely, as 
they should do because the same pseudopotentials were used. The supermatrix used 
in the calculation was of dimension 74 x 74. 

In table 2 some critical points of the present GaAs band structure are compared 
with previous calculations. The third column in this table was given in the paper 
by Giovanni and Christensen [29]. It is a linear muffin-tin orbital calculation by 
Jarlborg and Freeman [30] and is in good agreement with the present calculation, 
to within 0.2eV, except at the conduction band critical points XI and X,, where 
the difference is 0.5 and 0.4eV respectively. The results may also be compared 
to those by 'hng 1311, shown in the last column of the table. 'hng treats the local 
pseudopotential Hamiltonian in the spatial representation by the tight-binding theory. 
Again the agreement is quite good, the critical values agreeing to within 0.3eV except 
at the rl point, where the difference is 0.5eV 
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Table 2. Crilical poinls of the GaAs band ~Imclure. All energies are measured in C y  

Cnlical points Present work Ref. (301 Ref. 1311 

-12.1 -12.3 -12.59 
0.a 0.0 0.0 

rl 1.2 1.1 1.42 
TIS 4.4 4.5 4.42 
x1 -10.2 - 10.42 -10.55 
7.3 -6.2 -6.243 -5.95 

-2.4 -2.43 -2.18 
1.6 
1.9 

2.07 1.87 
2.31 2.12 

L1 -10.8 -11.06 -11.13 
L1 -6.0 -6.09 -6.27 

L1 1.5 1.55 1.54 
L, 4.9 4.91 5.17 

L3 -1.0 -1.02 -0.72 

3.2. Complex band structure 

When calculating the band structure for an infinite crystal the imaginary part of E is 
put equal to zero, leading to ‘real lines’ [32] in the complex band structure. In the 
calculation of photoemission intensities we need complex band structures obtained 
for mmplex energies. For energies above the vacuum level, the imaginary part 
of the energy represents the ‘absorption’ of a WED electron (or the lifetime of a 
photoelectron in its final state), while for energies below the Fermi level the presence. 
of such an imaginary part can be thought of as describing the lifetime of a hole state, 
which results after photoexcitation. 

Figures 3 and 4(a) show three-dimensional complex band structures for Mg and 
GaAs respectively, where the real energy is plotted as a function of the real and 
imaginary parts (leT, l e ; )  of le,. Figure 4(b) shows (for GaAs) in a three-dimensional 
complex band structure plot the typical effect that a small (0.OSeV) constant imaginary 
part of the energy produces on the complex band structures. We have found that 
the use of a small imaginary part of energy is a great help in understanding the 
complicated band structure of GaAs. Figures 5(a) and (b) show an alternative 
projected representation of the complex band structure of GaAs in the [110] and 
[lo01 directions, for real energies. 

For Mg we have not found in the literature comparative results of complex band 
structure. The complex band structure has been obtained by Smith et af [33] for 
GaAs (along the [Ool] direction, k - 0). They use a pseudopotential and employ 
a (damped) plane-wave basis set. &iplex band structures of zinc-blende materia;$ 
have also been obtained by Chang [34] using an empirical tight-binding formalism. 
The complex band structures of Chang, for GaAs in the [loo] and [110] directions, 
do not show qualitative agreement with the present calculations in the topological 
form of the imaginary and complex bands. (See Chang’s figures 4 and 16.) It is to 
be noted, however, that for energies greater than the valence. band maximum, the 
conventional real band structure of Chang already shows a qualitative deviation from 
other results (such as those referenced in table 2 including the present results, and 
those of [33]). It is suggested that a comparison of complex band structures may be 
useful for deriving proper parameters in an empirical scheme like that of Chang. 

The complex band structure obtained by Smith et al [33] for GaAs in the [lo01 
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4 

Figure 3. Perspective representation 
of the complex band ~ t m ~ t u r e  for 
Mg ( a )  for kll = 0, ( b )  for kll = 
1.7619A-1 in the [llZO] direclion 
and ( e )  for kll = 1.0173A-' in the 
[lliO] direction (see figure 6). The 
circles connected by full curves show 
points on the real plane ( k i  and k ,  
are in units of A-'). (Note thal the 
imaginary loop at the two ends of 
( b )  are different.) 
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kj ( A - ] )  
Figure 4. Perspeclive repmenlation of lhe complex band stmuclure for ( a )  an infinite 
crystal of G a b  in the PK-X direction. The full curve show poinls lying on the real 
plane, i.e. rhe conventional band S~NUC~UE. ( k i  and k, are in units of A-'.) ( b )  Same 
as (a), except it  is oblained wilh the imaginary pan of the energy equal lo 0.05 eV. 
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Figure 5. Usual projected represenlation. (a) Ihe complex band structure of GaAs 
along the [I101 direction where the band structure enclosed in the small rectangle has 
been enlarged for clarity, and ( b )  the complex band structure of G a b  along the [Wl] 
direction. In both cases the cmsses correspond to imaginary bands, full circles to rt4 
bands and the pairs of broken cuwes to complex bands. 

direction shows better agreement with the present results (figure S(b) )  than does the 
complex band structures obtained by Chang. However, on comparing figure 2 of 
[33] with figure S(b) of the present paper, one difference is seen. The form of the 
complex band indicated with an arrow in figure S ( b )  is different to the corresponding 
band shown in figure 2 of [33]. For the moment it is not clear whether the difference 
comes from the different choice of the method or from the model potential. In any 
case, our result for GaAs indicates that this complex band belongs to those 'novel 
topological structures' of Chang, as shown in his figure 23. 
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4. Surface-state/resonance band structure 

As mentioned in the introduction, the present multislice method will form the basis 
for a one-step calculation of photoemission intensities. The final states being taken 
as the time-reversed LEED states and the initial states will be formed from a linear 
combination of Bloch waves obtained in the calculation of the complex band structure 
as the eigenvectors in (5). For details we refer to [35]. The initial state can be written 
as 

U y z )  = B+(z)c*+br- (z )cm-  (6) 

where C'" is a column vector containing the N coefficients of the Bloch waves B:(z) 
travelling or evanescent into the crystal, and the superscript m corresponds to the 
mth Bloch wave b y  - ( z )  propagating towards the surface from the bulk. By matching 
the waves and derivatives across the vacuum/crystal boundary ( z  = 0), neglecting the 
surface-barrier/over-layer region for simplicity, the equation below is obtained, from 
which the ratio C'" /cm - can be determined: 

(B:+(O)+ iKB+(0))cm = -(bjm-(0) +i lCby-(0))cm- (7) 

where him- and Bj+ represent the derivatives, and IC is a diagonal matrix containing 
the normal components of the wavevectors of the waves in vacuum (see equation (4)); 

can be easily modified to include a surface-barrier/over-layer. 
The surfaceatate/resonance band structure using the present method can be 

obtained by considering the condition that there is a solution to equation (7) when 
there is no incident wave (c"- = 0). That is, surface states/resonances exist at the 
zeros/nearly zeros of the determinant of matrix (BI++iKB+) ,  or more conveniently, 
of the Hermitian matrix 

p-  IS ' determined by normalization of the initial-state wavefunction This equation 

where the calculation is made without the imaginary lifetime parameter. We have 
found that equation (8) does not always correspond to a surface-state/resonance, 
particularly at band edges and saddle points of imaginary bands (e.g. inside the 
fundamental band gap of GaAs). In these cases equation (8) shows a sharp minimum, 
whereas for a surface-state/resonance a parabolic form of the minimum appears. It is 
necessary to plot the wavefunction as a function of distance into the crystal and note 
whether it has the form typical of a surface statehesonance (see figure A2). 

The surface-state/resonance band structure has been calculated by this method 
for Mg and GaAs (r-x' direction) using the step barriers and the terminated bulk 
lattice structures. The result for Mg is shown in figure 6. The open circles represent 
the bulk band edges and the position of the surface-states/resonances by smaller full 
circles. The surface electronic structure of Mg(0001) has been calculated by Chulkov 
et al [ZO] using the slab method (a ten-layer film was used). On comparing figure 6 
with figure 10 of [20], it can be seen that the band structures obtained by the two 
methods are very similar. However, in the present calculation two additional surface 
resonance bands were obtained, which are situated near the A? point at approximately 
2.2eV and near the K point at approximately 1.5eV (both are indicated by a broken 
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- 8  U - L L L L L  
M t I W ~ W  ~ n g s i r o m  r M 

2 0  1 1  ," 0 s  D O  0 4  O R  , z  

Figure 6. The surface-slate/rsonanee band StIIIcluIp of Mg (Oaal) obtained using the 
presenl melhcd. The small doll denote the position of the surface-siaiu/resonances and 
Ihe open circles denote projected bulk band edges. Perpendicular broken lines may be 
compared 10 figures 3(b), (c ) ,  and the perpendicular line wilh lags to figure A2. 

arrow). When using the slab method the classification of a surface resonance may be 
somewhat dficult, for if the slab is taken to be too thin it may be difficult to detect a 
slowly decaying surface-resonance wave. This may partly explain the absence in [ZO] 
of the extra resonances observed in the present work. 

In the present study a rather interesting behaviour of the wavefunction was 
observed at the positions of a minimum of expression (8) occurring a t  band edges 
as mentioned above; see, for example, figure A2(a), which is different to that of 
a surface state or resonance as shown in figure M ( c )  and different to that of an 
arbitrary initial state such as that shown in figure A2(b). It is possible that there 
exists a kind of 'beating' of the Bloch waves which compose the wavefunction at that 
energy. This idea will be investigated further in a later paper. 

The surface-statehesonance dispersions have also been calculated for GaAs (110) 
in the l=-xl direction using the multislice method. The results are shown in 
figure 7. They were obtained assuming an unrelaxed (lx 1) surface structure, i.t 
the terminated bulk structure. The results obtained using the present method are 
shown as crosses, the bulk band edges are represented by open circles and the region 
of the projected bulk bands is shown as the hashed area. The present results can be 
compared with the earlier calculations by Schmeits et a1 [36] (shown as full circles in 
figure 7) and Ferraz et ol [37] (shown as the broken lines in figure 7), who use a tight- 
binding scattering-theoretical method and a self-consistent pseudopotential method 
respectively, and also assume an unrelaxed (1x1) surface. In all of the calculations 
two surface states are present throughout the F-x' section of the Brillouin zone in 
the fundamental gap occurring in the energy region of approximately 0 to 1.5 e V  The 
position of these two bands in each calculation are slightly different, however they 
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3.0 

2.5 

2.0 

s 1.5 

Fkvn 7. The surface-slatelresonance band structure 
at GaAs (110) in the P - X ,  direction, assuming an 
unrelaxed surface. The c- show the surface slates 
obtained using the prewnt mullislice method, lhe full 
circles are the results of Schmeits er a1 1361, and the 
broken lines are the surface stales obtained by Ferraz - - et 01 1371. 

X’ r 

are within 0.5eV of each other. 
It is well known that the relaxation effects for GaAs (110) are significant 121-231 

and have a strong influence on the surface state/resonance band structure; therefore 
for calculations particularly concerned with surface states/resonances, an accurate 
potential must be used in the surface region [38]. 

5. Conclusion 

It has been demonstrated that the method presented, based on a multislice formalism 
for LEED, can he used successfully to calculate the conventional and complex bulk 
band stmcture and the surface-state/resonance hand structure of solids. It has been 
applied to Mg and GaAs, where good agreement with previous results were obtained. 

In addition, an interesting behaviour of the wavefunction in the vicinity of a 
particular kind of projected bulk band edge was observed; it satisfies, incidentally, the 
same existence conditions of surface resonances and is seemingly related to a kind of 
‘heating’ of the Bloch waves composing the wavefunction. 

It is noticed that the present multislice, method may be a useful alternative to 
the various methods of obtaining surface and interface electronic states such as those 
discussed by Smith er a1 [33], for example in analysing semiconductor heterojunctions. 
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Appendix. 

The convergence of the hand structure (wavevector IC, for kll = 0) as a function 
of hasis set size (number of beams) is illustrated by a few examples, as shown 
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in figure Al(a)  for GaAs (110) for the energies indicated (in eV and relative to 
the valence band maximum obtained for 29 beams). The results indicate that the 
calculation of band structures is sufficiently stable in the present range of parameters. 

Number of Beams 
10 

Number 01 Slicer 

Figure AI. Ihe perpendicular component of the wavevector k, 
(kll = 0) (A-') plotted as a function of lhe number of beams N for the three energies 
indicated (in eV and relative 10 the valence band maximum for 29 beams). The slice 
thickness was 0.250 A and there were 16 slices per perid. ( b )  GaAs (110). A plot 
of the z, y average of +(r) squared. (+(r)l-b(r))z,u, as a function of the number of 
Slices, ablained with an energy of -4.SeV (relative lo the valence band maximum for 
29 beams) and using the number of beams N indicated (kl = 0). 

(a) GaAs (110). 

Figure Al(b) shows a few examples for GaAs (110) of the variation of the 
z , y  average squared of $(r ) ,  (+(r)l$(r))4,y, derived from equations (5) and (6) 
without an imaginary potential, with both slice number and the number of beams. 
The position of z = 0 is the vacuumbulk crystal boundary. One finds that the 
curves converge with an increasing number of beams, but an ultimate divergence 
at a certain depth occurs when the function is evaluated beginning at the vacuum 
side, and is apparently due to the effect of increasing evanescent waves introduced 
by a numerical error. The divergence occurs earlier for a larger number of beams 
due to the effect of more strongly increasing evanescent waves. We note, however, 
that nothing serious happens within the first period (16 layers). The results remain 
practically the same for the calculations using 32 layers per period. 

We have found that the solution in further depths can be evaluated without 
divergence by using equation (6). The multislice calculation is done only in the first 
period ('cell') of the bulk and, when necessary, the surface barrier. The values of 
Bloch waves B c ( z )  and b y n - ( r )  appearing in (6) are evaluated inside the first 
cell and stored. The values of Um(z)  for succeeding cells are constructed by 
multiplying each of the Bloch waves by its proper exponential factor according to 
(5),  i.e. exp[ik:c(q - l ) ]  for the nth Bloch wave in the qth cell. The curves shown 
in figure A2 are derived using this new method. 

In figures A2(a), (b) and (c) are shown plots of ($(r ) l$(r ) )s ,y  for Mg(0001) 
as a function of slice number for three initial states, each with k,, = 1.527A in the 
r-I?-&l (or [I1201 direction (figure 6).) The first, present just a t  the band edge at 
an energy of 0.21eV, displays an unusual behaviour. It appears that some kind of 
enhancement is occurring, perhaps due to 'beating' of the Bloch waves composing 
the initial states. The second plot represents an arbitrary example of the usual type 
of variation of ( $ ( ~ ) l + ( r ) ) = , ~ ,  in this case at an energy of 1.OeV The third shows 
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Figure A2. (a) Mg (Oool). A plot of the Z , Y  
average of + ( v )  squared as a function of the 
number of s l i m  to show the unusual behaviour 

x at an energy of 0.21eV (relatjie-to-lhe F e F i  - level) wilh k11 = 1.527A in the I'-K-M or [1120] 3 
=?- jireclion. %.o ftinctions 01 the type given by 

equation (6) are shown. (b) As for (a) but obtained 
=?- 31 an energy of 1.0eV 10 show an arbilraly example 
V of the usual form of (J..(-)l+(r))z,u. Also Crm 

functions are shown. (e) As for (a) but oblained 
at an energy of 1.43eV to show an aample 01 the 
typical behaviour of (+(r)l+(r)).,u for a surface 
resonance. 
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the typical behaviour of ($(r) l$(r))s ,3  for a surface-state resonance (at an energy 
1.43eV) where the enhancement of the wavefunction near the surface can be seen. 
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